* Reasoning with Uncertainty

Estimation and Filtering
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Optimal Estimation

= The goal of optimal estimation is to determine the
best estimate of the state of the system given a set
of observations
= Best implies minimum error

= There are 3 general types of estimation problems
that differ in terms of the available observations

= Filtering: Determine the best estimate for the current
point in time

= Smoothing: Determine the best estimate for a point in
time in the past

= Prediction: Determine the best estimate for a point in time
in the future
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Probabilistic Reasoning

i Over Time

= Stochastic processes can be represented in
terms of conditional probabilities

= State of the system at time ¢: 5, €S
= Observation of the system at time ¢: 0,€ 0
= System model: P(s)s, ;,0,...0,,,)
= Observation model: P(o,s o0, ,,...0,,,)
= Useful properties for stochastic processes

» Stationarity — The process itself does not change
over time

= Markov — The state of the system depends only
on a ;inite history (first order: only on the last
state
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i Dynamic Bayesian Networks

= Stochastic processes that are Markov
(any order) can be represented using
Dynamic Bayesian Networks

= Replicated networks for the state at
different time steps

= Connections between time copies encode
transition probabilities

= Connections from state-related notes to
observation-related nodes represent the
observation model
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‘.L Bayesian Filtering

= A Bayesian filter computes the posterior
distribution of the state using the
observations
= Discrete case:

P(0,15,,0,.1-:0)P(8,10,_1,0,)
P(0,10,11-,0,)

P(s, |o,,0,_,...,0,) =

= Continuous case:
_p(o,]5,,0,15...,0)p(s,]0,_,...,0)
0,) =

p(ot | Ot—l""’ol)

p(s,|o,,0,_,...,
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Bayesian Filtering

= A Bayesian filter computes the posterior
distribution of the state using the
observations

= Discrete case:
P(Ot |St>0z—19""01)P(St |0z—19"'=01)
P(o, |o,_,,...,0))

P(Ot |St90t—19"'701)25[7| P(St |St—170z—19"':01)P(Sz—1 |0z—19"':01)
ESH P(o,]5,,0,_5-0,0)P(s,. | 0,_,...,0,)

= Continuous case:

0 ) _ p(ot |St’0t—1’""01)p(st | Ot—l’""ol)
)=
plo, |o,_,...,0))

p(ot | St’ot—lﬁ"'>01 )j: p(St | St—l’Ot—l""Jol)p(St—l | Ot—l""’ol)dst—l
Si-1

P(s, |o,,0, ,...,0,) =

p(s,|0,,0, 5.y

j; p(ot |Sz—1,ot—19"'901)p(st—1 | 01_1,...,01)dSt_1
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‘_L Recursive Bayesian Filtering

= If the process is Markov the recursive
Bayesian filter can be derived

= Discrete case:
P(o, | st,ot_l,...,ol)EsH P(S, ]S, 1,0, 5...0,)P(5,_, | 0, ..., 0,)
ES,_I P(Ol | St—l,ot—la'"aol)P(S,_l | Ot_l,...,Ol)
P(o, 1) P(s,15,)P(5,110,.15-50,)
i ESH P(o,|s,)P(s,_ |0,_,...,0)

P(s, |o,,0, ,...,0,) =

=a P(o, |s,)2sH P(s, | s, ))P(s, |0, s.50))

= Continuous case:

PO 15,50, 1550 [ P(S18,150,1550) P(S,y [0,15,0) s
-1

P(8,10,,0,4,...,0,) =
j; p(o, |St—1,0t—1""’01)p(st—l |0, 5++,0,)dS,_,
t-1

P, 15[, P, 15,05, 1010,

= ap(ot ’ St) p(sz | St—l)p(st—l ’ Ot—l""’ol)dst—l
j;,l p(O[ | St—l)p(sz—l | O;_15++50 )dSt—l qu
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i Recursive Bayesian Filtering

= The recursive Bayesian filter can be broken
into two phases

= Prediction:

p(St | 01—19“'901) =j; p(Sz | Sz—l)p(St—l | 0z—19°'°901)dSt—1
-1
= Measurement:

p(o,|s,)

P(0,10,150))

p(s, lo,,0,_,..,0,) = p(s, |0, _s..,0)
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‘.L Recursive Bayesian Filtering

= Benefits of a Bayesian filter
= Optimal estimates
= No assumptions about distributions
=« Uniform framework

= Problems of the filter
= Often computationally intractable
= Integral might not be analytically solvable
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i Kalman Filter

= The Kalman filter is a special case of the
recursive Bayesian filter for the following
assumptions:
= The system and observation model are linear
s, =As,_ +w,
o, =Hs +v,
= The prior distribution and the uncertainty in the
system and observation models are Gaussian
w, ~ N(0,0)
v, ~N(0O,R)
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Kalman Filter

.

= The Kalman filter estimates the posterior
distribution in terms of the mean and the
Covariance matrix

s, =F

t

s, ]

P=E

:(St - §t)(St - §t)T]

= The posterior distribution is a Gaussian
distribution (maintaining the first two moments

of the d
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i Discrete Kalman Filter

= The discrete Kalman filter is a special version
of the recursive Bayesian filter

= Prediction:
S = AS,_
B = APHAT +0
= Measurement:
s, =5 +K,(o,—Hs,)
K, =P H'(HPH" +R)”
F=(U-KH)F
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The Kalman Gain —
Example Derivation

= The Kalman gain K, is the weight term that
minimizes the expected squared difference
between the estimate and the true state.
= Derivation of K, for a simple example:
= The state is one-dimensional: s,&%, P.=07
= The process is stationary: 4 = 1, =0
= The system directly observes the state: H=1, R= o

= The prior distribution is Normal with a mean of s, and a
variance of P,

Since the system is linear and all distributions are
Gaussian, the resulting posterior distribution
after every recursive step is a Gaussian with
mean S, and variance P,
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The Kalman Gain —
i Example Derivation

= Prediction:
= The process is stationary and there is no
uncertainty added at every step:

S, =8,

= Measurement:
= Since both distributions are Gaussian:

Els, 1=K, +K,o,
E[(‘é:t _St)z]
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The Kalman Gain —
Example Derivation

= The true state s, is related to the estimate as in:
s, =s +e, , Ele]=P

=St+ét_ 9E[ét—]=Pt_

A —

S

= Using this, the goal is to find the gains K, and K, that minimize

the expected value of the squared posterior error, E[é] .
ét = §t =8, = (K1§; +K20t) =8, = Kl(St + éz_) +K20t =5,

= Since the observation is directly of the state:
o0, =5, + €,

=

e,=K/(s,+e)+K,(s,+e)-s,=s(K,+K,-1)+Ke, +K,e,
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The Kalman Gain —
Example Derivation

= In order for the estimated posterior to be unbiased, the expected
value of the error has to be 0:

Ele]=E[s,(K,+K,-1)+Ke +K,e ]=5,(K,+K,-1)=0
= K, =1-K,
= Given this, the expected value of the posterior error is:
E[61]= EI(K.& +(1-K))e,)’ ] = EIK e +(1-K,)’€} +2K,(1-K)éTe, ]

= Since the state and observation errors are both »-mean and
independently distributed:

A A2 A2 -
Eg]=EK'e 1+ E(1-K)) 1=K E[¢ 1+ (1-K,) Ele; 1= K[ +(1-K,) 0,

= 10 minimize this we set the derivative to 0 :

E ~2
9Ele] _ 2K,P"+2(1-K))(-D)o? =K,2P" +20.)-20. 20
oK,
5 5 ~ 5 2 _ 2 2 -
X N P R i} P P
= K, = D 7 > 5= Ze 25t — 2 0 ’Pz=E[et2]= _Uo 7| B+ - 2 Oj: O-Olz
P +o0 P +0; P +o0, P +o0, P +0, P +0,
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i Discrete Kalman Filter

= The discrete Kalman filter provides the
optimal estimate for the posterior probability
distribution given the conditions are met.
= Always converges to the optimal estimate

= The best estimate for the next state is usually
extracted as the mean of the distribution as it
minimizes multiple error metrics, e.g.:
= Maximum likelihood estimate
= Minimum squared error estimate
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‘.L The Extended Kalman Filter

= The Extended Kalman Filter (EKF) relaxes
the requirement on linear models

= Uses the Jacobian matrix as a locally linear
approximation of the function.

= Note: The EKF does not always converge to the
correct solution
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Kalman Filters

= Kalman filters give optimal estimates for
cases where the distributions for the
estimates and the observations are Gaussian
= Advantages

= Optimal estimates
= Fast filter updates: O(1)

= Disadvantages
= Only normal distributions (i.e. only unimodal estimates)
= EKF has no optimal convergence guarantees

© Manfred Huber 2015 19



‘-L Discretized Bayesian Filters

= Approximate filters for non-Gaussian
scenarios can be created by discretizing the
state space for the distribution
=« Complexity: Om?) : n = number of state
partitions
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i Sampling-Based Filters

= General distributions can be approximated
using a set of weighted samples, {s".#"},
drawn at random from the distribution
= Samples represent an empirical density function
py(s) =3 w8, (s)

= If the samples are drawn from everywhere in the
distribution and if the weight is set appropriately

[ps)ds = [py(s)ds = i
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i Sampling-Based Filters

= Monte Carlo Sampling from the distribution p
(s) produces a sample distribution p,(s) that
approximates p(s) where every sample has a
weight of I/N

= Samples (“Particles”) can approximately
represent any distribution in a finite amount of

memory
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i Sequential Monte Carlo Filters

= Sequential Monte Carlo Filters (Particle
filters) are a version of the recursive
Bayesian filter that uses samples to

represent the distribution
= Prediction:

E0whh o 5~ (s, [55)

= Measurement:

o . 1
(5O w9 w® = —w po, 159),a = E w p(o, 15)
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i Sequential Monte Carlo Filters

= The basic filter can lead to a degenerate
distribution (samples have very uneven
weights)

= A lot of memory might be spent on samples (particles)
with weights close to 0.

= Loss of quality in the approximation
= Resampling after each iteration

() o) . 2@ ) ()
{St s W, } S W W = N
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i Sequential Monte Carlo Filters

= Simple location estimation problem

= Robot moves along a hallway, initially not
knowing its location or orientation

= Robot can measure the distance to the closest
wall with a noisy omnidirectional sonar sensor

.
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ﬁ Sequential Monte Carlo Filters
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ﬁ Sequential Monte Carlo Filters
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i Sequential Monte Carlo Filters

= Particle filters do not impose any limitations
on the distributions or process models used

= Advantages:
= Arbitrary distributions
= Arbitrary models
= Controllable complexity: O(N)

= Disadvantages:
= Only approximate distribution

= No obvious estimate (this is a problem with all general
distribution estimators)
Maximum likelihood ?
Minimum squared error ?
Highest likelihood region ?
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Optimal Estimation

= Different estimators for different problems

= General Bayesian filter
= For discrete problems with small state spaces

= Kalman filters
= Fast estimators
=« Assumes Gaussian distributions
= Only suitable for unimodal distributions

= Discretization
= For state spaces that form a small number of partitions
= Only approximate solution
= Might violate Markov property

« Particle filters
= Represents arbitrary processes and distributions
= Only approximate solution
= Number of particles (samples) effects precision
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