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Reasoning with Uncertainty 

Estimation and Filtering 
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Optimal Estimation 
n  The goal of optimal estimation is to determine the 

best estimate of the state of the system given a set 
of observations 
n  Best implies minimum error 

n  There are 3 general types of estimation problems 
that differ in terms of the available observations 
n  Filtering: Determine the best estimate for the current 

point in time  
n  Smoothing: Determine the best estimate for a point in 

time in the past 
n  Prediction: Determine the best estimate for a point in time 

in the future 
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Probabilistic Reasoning  
Over Time 

n  Stochastic processes can be represented in 
terms of conditional probabilities 
n  State of the system at time t: st ∈ S 
n  Observation of the system at time t: ot ∈ O 
n  System model: P(st|st-1,ot,…o1,s0) 
n  Observation model: P(ot|st,ot-1,…o1,s0) 

n  Useful properties for stochastic processes 
n  Stationarity – The process itself does not change 

over time 
n  Markov – The state of the system depends only 

on a finite history (first order: only on the last 
state) 
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Dynamic Bayesian Networks 

n  Stochastic processes that are Markov 
(any order) can be represented using 
Dynamic Bayesian Networks 
n  Replicated networks for the state at 

different time steps 
n  Connections between time copies encode 

transition probabilities 
n  Connections from state-related notes to 

observation-related nodes represent the 
observation model 
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Bayesian Filtering 
n  A Bayesian filter computes the posterior 

distribution of the state using the 
observations  
n  Discrete case: 

n  Continuous case: 
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Bayesian Filtering 
n  A Bayesian filter computes the posterior 

distribution of the state using the 
observations  
n  Discrete case: 

n  Continuous case: 
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Recursive Bayesian Filtering 
n  If the process is Markov the recursive 

Bayesian filter can be derived  
n  Discrete case: 

n  Continuous case: 
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Recursive Bayesian Filtering 
n  The recursive Bayesian filter can be broken 

into two phases 
n  Prediction:  
 

n  Measurement: 
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Recursive Bayesian Filtering 
n  Benefits of a Bayesian filter 

n  Optimal estimates 
n  No assumptions about distributions 
n  Uniform framework 

n  Problems of the filter 
n  Often computationally intractable 
n  Integral might not be analytically solvable 
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Kalman Filter 
n  The Kalman filter is a special case of the 

recursive Bayesian filter for the following 
assumptions: 
n  The system and observation model are linear 

n  The prior distribution and the uncertainty in the 
system and observation models are Gaussian 
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Kalman Filter 
n  The Kalman filter estimates the posterior 

distribution in terms of the mean and the 
Covariance matrix  

n  The posterior distribution is a Gaussian 
distribution (maintaining the first two moments  
of the distribution) 
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n  The discrete Kalman filter is a special version 
of the recursive Bayesian filter 
n  Prediction:  
 

n  Measurement: 

Discrete Kalman Filter 
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n  The Kalman gain Kt is the weight term that 
minimizes the expected squared difference 
between the estimate and the true state. 
n  Derivation of Kt for a simple example: 

n  The state is one-dimensional: st∈ℜ, Pt=σt
2 

n  The process is stationary: A = 1, Q=0 
n  The system directly observes the state: H=1, R= σo

2 

n  The prior distribution is Normal with a mean of s0 and a 
variance of P0 

 Since the system is linear and all distributions are 
Gaussian, the resulting posterior distribution 
after every recursive step is a Gaussian with 
mean      and variance Pt 

The Kalman Gain –  
Example Derivation 

tŝ
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n  Prediction: 
n  The process is stationary and there is no 

uncertainty added at every step: 

n  Measurement: 
n  Since both distributions are Gaussian: 
  
  

The Kalman Gain –  
Example Derivation 

1

1ˆˆ

−
−

−
−

=

=

tt

tt

PP
ss

])ˆ[(

ˆ][ˆ
2

21

ttt

tttt

ssEP
oKsKsEs

−=

+== −



© Manfred Huber 2015 15 

The Kalman Gain –  
Example Derivation 

n  The true state st is related to the estimate as in: 

 

n  Using this, the goal is to find the gains K1 and K2 that minimize 

the expected value of the squared posterior error,          .   

n  Since the observation is directly of the state: 
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The Kalman Gain –  
Example Derivation 

n  In order for the estimated posterior to be unbiased, the expected 
value of the error has to be 0: 

 
n  Given this, the expected value of the posterior error is: 

n  Since the state and observation errors are both b-mean and 
independently distributed: 

n  To minimize this we set the derivative to 0 : 

]ˆ)1(2)1(ˆ[]))1(ˆ[(]ˆ[ 11
22

1
22

1
2

11
2

oto
i
tott eeKKeKeKEeKeKEeE −− −+−+=−+=

22
1

2
1

22
1

22
1

22
1

22
1

2 )1(][)1(]ˆ[])1[(]ˆ[]ˆ[ ototott KPKeEKeEKeKEeKEeE σ−+=−+=−+= −−−

12

212121

1
0ˆ)1(]ˆ)1([]ˆ[

KK
KKseKeKKKsEeE tottt

−=⇒

=−+=++−+= −

2

2
2

2

2

2

2

2
2

22

2

2

2

1

22
1

2
11

1

2

]ˆ[,ˆˆ,

0ˆ2)22()1)(1(22]ˆ[

ot

to
o

ot

t
t

ot

o
ttt

ot

t
t

ot

o
t

ot

o

ootot
t

P
P

P
PP

P
eEPo

P
Ps

P
s

P
K

PKKPK
K
eE

σ
σ

σ
σσ

σ
σσ

σ
σ

σ

σσσ

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
==

+
+

+
=

+
=⇒

=−+=−−+=
∂

∂

−

−

−

−
−

−−

−
−

−−

−−



© Manfred Huber 2015 17 

n  The discrete Kalman filter provides the 
optimal estimate for the posterior probability 
distribution given the conditions are met.  
n  Always converges to the optimal estimate 

n  The best estimate for the next state is usually 
extracted as the mean of the distribution as it 
minimizes multiple error metrics, e.g.: 

n  Maximum likelihood estimate 

n  Minimum squared error estimate 

Discrete Kalman Filter 
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n  The Extended Kalman Filter (EKF) relaxes 
the requirement on linear models 
n  Uses the Jacobian matrix as a locally linear 

approximation of the function. 

n  Note: The EKF does not always converge to the 
correct solution 

The Extended Kalman Filter 
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n  Kalman filters give optimal estimates for 
cases where the distributions for the 
estimates and the observations are Gaussian 
n  Advantages 

n  Optimal estimates 

n  Fast filter updates: O(1) 

n  Disadvantages 
n  Only normal distributions (i.e. only unimodal estimates) 

n  EKF has no optimal convergence guarantees 

Kalman Filters 
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n  Approximate filters for non-Gaussian 
scenarios can be created by discretizing the 
state space for the distribution 
n  Complexity: O(n2) : n = number of state 

partitions 

Discretized Bayesian Filters 
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n  General distributions can be approximated 
using a set of weighted samples,          , 
drawn at random from the distribution 
n  Samples represent an empirical density function 

n  If the samples are drawn from everywhere in the 
distribution and if the weight is set appropriately 

Sampling-Based Filters 
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n  Monte Carlo Sampling from the distribution p
(s) produces a sample distribution pN(s) that 
approximates p(s) where every sample has a 
weight of 1/N 
n  Samples (“Particles”) can approximately 

represent any distribution in a finite amount of 
memory 

Sampling-Based Filters 
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n  Sequential Monte Carlo Filters (Particle 
filters) are a version of the recursive 
Bayesian filter that uses samples to 
represent the distribution 
n  Prediction:  
  

n  Measurement: 

Sequential Monte Carlo Filters 
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n  The basic filter can lead to a degenerate 
distribution (samples have very uneven 
weights) 

n  A lot of memory might be spent on samples (particles) 
with weights close to 0. 

n  Loss of quality in the approximation 

n  Resampling after each iteration 

Sequential Monte Carlo Filters 
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n  Simple location estimation problem 

n  Robot moves along a hallway, initially not 
knowing its location or orientation 

n  Robot can measure the distance to the closest 
wall with a noisy omnidirectional sonar sensor 

Sequential Monte Carlo Filters 

L 



© Manfred Huber 2011 26 

Sequential Monte Carlo Filters 

Initial particle set 

Measurement  
  

 
  

Prediction 

Resampling 

Measurement  
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Sequential Monte Carlo Filters 
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n  Particle filters do not impose any limitations 
on the distributions or process models used 
n  Advantages: 

n  Arbitrary distributions 
n  Arbitrary models 
n  Controllable complexity:  O(N) 

n  Disadvantages: 
n  Only approximate distribution 
n  No obvious estimate (this is a problem with all general 

distribution estimators) 
n  Maximum likelihood ? 
n  Minimum squared error ? 
n  Highest likelihood region ? 

Sequential Monte Carlo Filters 
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n  Different estimators for different problems 
n  General Bayesian filter 

n  For discrete problems with small state spaces 
n  Kalman filters 

n  Fast estimators 
n  Assumes Gaussian distributions 
n  Only suitable for unimodal distributions 

n  Discretization 
n  For state spaces that form a small number of partitions 
n  Only approximate solution  
n  Might violate Markov property 

n  Particle filters 
n  Represents arbitrary processes and distributions 
n  Only approximate solution 
n  Number of particles (samples) effects precision 

Optimal Estimation 


